Transforming user experience in the metaverse through edge technology

Authors

https://doi.org/10.22105/metaverse.v1i1.19

Abstract

The Metaverse, an emerging virtual universe, allows real-time interactions and solid social links between humans, akin to the physical world. However, today's cloud-based metaverse infrastructure struggles to meet the metaverse's low latency and high bandwidth requirements. This is where edge computing steps in, moving processing closer to consumers and applications and overcoming these challenges. The Metaverse, as a new distributed computing paradigm for computationally intensive tasks, can be offloaded to the network's edge. In this paper, we first outline the architecture of the metaverse and the driving technologies and underscore the pivotal role of edge computing in the digital infrastructure for realizing the metaverse. We then propose an edge computing-enabled Metaverse, focusing on its performance in terms of rendering, latency, resource allocation, and communication. Finally, we delve into the challenges of implementing edge techniques, ensuring a comprehensive understanding of the topic.

Keywords:

Metaverse, Edge computing, Distributed computing, Latency

References

  1. [1] Wang, G., Badal, A., Jia, X., Maltz, J. S., Mueller, K., Myers, K. J., … & Zeng, R. (2022). Development of metaverse for intelligent healthcare. Nature machine intelligence, 4(11), 922–929. DOI:10.1038/s42256-022-00549-6

  2. [2] Ali, S., Abdullah, Armand, T. P. T., Athar, A., Hussain, A., Ali, M., … & Kim, H. C. (2023). Metaverse in healthcare integrated with explainable AI and blockchain: enabling immersiveness, ensuring trust, and providing patient data security. Sensors, 23(2), 565. DOI:10.3390/s23020565

  3. [3] Hoang, D. T., Nguyen, D. N., Nguyen, C. T., Hossain, E., & Niyato, D. (2023). Metaverse communication and computing networks: applications, technologies, and approaches. John Wiley & Sons. DOI: 10.1002/9781394160013

  4. [4] Kulkarni, S., Dwivedi, J. N., Pramanta, D., & Tanaka, Y. (2024). Edge computational intelligence for AI-enabled IoT systems. CRC Press. DOI: 10.1201/9781032650722

  5. [5] Kashyap, R. (2022). Machine learning, data mining for IOT-based systems. In Research anthology on machine learning techniques, methods, and applications (pp. 447–471). IGI Global. DOI: 10.4018/978-1-6684-6291-1.ch025

  6. [6] Wang, Y., & Zhao, J. (2022). A survey of mobile edge computing for the metaverse: architectures, applications, and challenges. 2022 IEEE 8th international conference on collaboration and internet computing (CIC) (pp. 1–9). IEEE. DOI: 10.1109/CIC56439.2022.00011

  7. [7] Bavkar, D., Kashyap, R., & Khairnar, V. (2023). Deep hybrid model with trained weights for multimodal sarcasm detection. International conference on information, communication and computing technology (pp. 179–194). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-5166-6_13

  8. [8] Zhang, J., Chen, B., Zhao, Y., Cheng, X., & Hu, F. (2018). Data security and privacy-preserving in edge computing paradigm: survey and open issues. IEEE access, 6, 18209–18237. DOI:10.1109/ACCESS.2018.2820162

  9. [9] Ahsani, V., Rahimi, A., Letafati, M., & Khalaj, B. H. (2023). Unlocking Metaverse-as-a-service the three pillars to watch: privacy and security, edge computing, and blockchain. ArXiv preprint arxiv:2301.01221. http://arxiv.org/abs/2301.01221

  10. [10] Lee, L. H., Braud, T., Zhou, P., Wang, L., Xu, D., Lin, Z., … & Hui, P. (2021). All one needs to know about Metaverse: a complete survey on technological singularity, virtual ecosystem, and research agenda. ArXiv preprint arxiv:2110.05352. http://arxiv.org/abs/2110.05352

  11. [11] Chang, L., Zhang, Z., Li, P., Xi, S., Guo, W., Shen, Y., ... & Wu, Y. (2022). 6G-enabled edge AI for metaverse: challenges, methods, and future research directions. Journal of communications and information networks, 7(2), 107–121. DOI:10.23919/JCIN.2022.9815195

  12. [12] Xu, M., Ng, W. C., Lim, W. Y. B., Kang, J., Xiong, Z., Niyato, D., … & Miao, C. (2023). A full dive into realizing the edge-enabled Metaverse: visions, enabling technologies, and challenges. IEEE communications surveys and tutorials, 25(1), 656–700. DOI:10.1109/COMST.2022.3221119

  13. [13] Manushri, S. K., Santhiya, J., Roobasri, A. E., Keshav Shanmukhanathan, E., & Sanjai, V. (2022). Metaverse - the future of virtual world. International journal of engineering technology and management sciences, 6(5), 779–783. https://doi.org/10.46647/ijetms.2022.v06i05.121

  14. [14] Zhu, H. Y., Hieu, N. Q., Hoang, D. T., Nguyen, D. N., & Lin, C. T. (2024). A human-centric Metaverse enabled by brain-computer interface: a survey. IEEE communications surveys and tutorials, 1–1. DOI:10.1109/COMST.2024.3387124

  15. [15] Cao, B., Wang, Z., Zhang, L., Feng, D., Peng, M., Zhang, L., & Han, Z. (2023). Blockchain systems, technologies, and applications: a methodology perspective. IEEE communications surveys and tutorials, 25(1), 353–385. DOI:10.1109/COMST.2022.3204702

  16. [16] Alkhateeb, A., Jiang, S., & Charan, G. (2023). Real-time digital twins: vision and research directions for 6G and beyond. IEEE communications magazine, 61(11), 128–134. DOI:10.1109/MCOM.001.2200866

  17. [17] Dhillon, P. K. S., & Tinmaz, H. (2024). Immersive realities: a comprehensive guide from virtual reality to Metaverse. Journal for the education of gifted young scientists, 12(1), 29–45. DOI:10.17478/jegys.1406024

  18. [18] Azeem, W., Malik, A. A., & Yar, M. A. (2019). Internet of things: architectural components, protocols and its implementation for ubiquitous environment. Lahore garrison university research journal of computer science and information technology, 3(3), 51–55. DOI:10.54692/lgurjcsit.2019.030384

  19. [19] Taye, M. M. (2023). Understanding of machine learning with deep learning: architectures, workflow, applications and future directions. Computers, 12(5), 91. DOI:10.3390/computers12050091

  20. [20] Zhang, W., Chen, J., Zhang, Y., & Raychaudhuri, D. (2017). Towards efficient edge cloud augmentation for virtual reality mmogs [presentation]. Proceedings of the second ACM/IEEE symposium on edge computing (pp. 1–14). https://doi.org/10.1145/3132211.3134463

  21. [21] Dhelim, S., Kechadi, T., Chen, L., Aung, N., Ning, H., & Atzori, L. (2022). Edge-enabled metaverse: the convergence of metaverse and mobile edge computing. TechRxiv. DOI:10.36227/techrxiv.19606954.v1

  22. [22] Guo, F., Yu, F. R., Zhang, H., Ji, H., Leung, V. C. M., & Li, X. (2020). An adaptive wireless virtual reality framework in future wireless networks: a distributed learning approach. IEEE transactions on vehicular technology, 69(8), 8514–8528. DOI:10.1109/TVT.2020.2995877

  23. [23] Park, J., & Bennis, M. (2018). URLLC-embb slicing to support vr multimodal perceptions over wireless cellular systems. Proceedings-IEEE global communications conference (GLOBECOM) (pp. 1–7). IEEE. DOI: 10.1109/GLOCOM.2018.8647208

  24. [24] Yang, W., Liew, Z. Q., Lim, W. Y. B., Xiong, Z., Niyato, D., Chi, X., … & Letaief, K. B. (2022). Semantic communication meets edge intelligence. IEEE wireless communications, 29(5), 28–35. DOI:10.1109/MWC.004.2200050

  25. [25] Duan, H., Li, J., Fan, S., Lin, Z., Wu, X., & Cai, W. (2021). Metaverse for social good: a university campus prototype [presentation]. Proceedings of the 29th acm international conference on multimedia (pp. 153–161). https://doi.org/10.1145/3474085.3479238

  26. [26] Chen, Y., Zhang, N., Zhang, Y., Chen, X., Wu, W., & Shen, X. (2019). Energy efficient dynamic offloading in mobile edge computing for internet of things. IEEE transactions on cloud computing, 9(3), 1050–1060.

  27. [27] Sunyaev, A., & Sunyaev, A. (2020). Fog and edge computing. Internet computing: principles of distributed systems and emerging internet-based technologies, 237–264.

  28. [28] Beck, M. T., Werner, M., Feld, S., & Schimper, T. (2014). Mobile edge computing : a taxonomy [presentation]. Proc. of the sixth international conference on advances in future internet. (pp. 48–54). https://www.researchgate.net/publication/267448582_Mobile_Edge_Computing_A_Taxonomy

  29. [29] Lam, N. T. (2021). Developing a framework for detecting phishing URLs using machine learning. International journal of emerging technology and advanced engineering, 11(11), 61–67. DOI:10.46338/IJETAE1121_08

  30. [30] Liu, X., Zheng, J., Zhang, M., Li, Y., Wang, R., & He, Y. (2024). Multi-user computation offloading and resource allocation algorithm in a vehicular edge network. Sensors, 24(7), 2205. DOI:10.3390/s24072205

  31. [31] Saad, W., Bennis, M., & Chen, M. (2020). A vision of 6G wireless systems: applications, trends, technologies, and open research problems. IEEE network, 34(3), 134–142. DOI:10.1109/MNET.001.1900287

  32. [32] Quang Hieu, N., Nguyen, D. N., Hoang, D. T., & Dutkiewicz, E. (2022). When virtual reality meets rate splitting multiple access: a joint communication and computation approach. ArXiv e-prints, arXiv--2207. DOI:10.48550/arXiv.2207.12114

  33. [33] Letaief, K. B., Chen, W., Shi, Y., Zhang, J., & Zhang, Y. J. A. (2019). The roadmap to 6G: AI empowered wireless networks. IEEE communications magazine, 57(8), 84–90. DOI:10.1109/MCOM.2019.1900271

  34. [34] Mao, Y., Dizdar, O., Clerckx, B., Schober, R., Popovski, P., & Poor, H. V. (2022). Rate-splitting multiple access: fundamentals, survey, and future research trends. IEEE communications surveys & tutorials, 24(4), 2073–2126.

  35. [35] You, X., Wang, C. X., Huang, J., Gao, X., Zhang, Z., Wang, M., … & Liang, Y. C. (2021). Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Science china information sciences, 64(1), 1–74. DOI:10.1007/s11432-020-2955-6

  36. [36] Tataria, H., Shafi, M., Molisch, A. F., Dohler, M., Sjoland, H., & Tufvesson, F. (2021). 6G wireless systems: vision, requirements, challenges, insights, and opportunities. Proceedings of the IEEE, 109(7), 1166–1199. DOI:10.1109/JPROC.2021.3061701

  37. [37] Jana, S., Molnar, D., Moshchuk, A., Dunn, A., Livshits, B., Wang, H. J., & Ofek, E. (2013). Enabling fine-grained permissions for augmented reality applications with recognizers [presentation]. Proceedings of the 22nd usenix security symposium (pp. 415–430). https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/jana

  38. [38] Shang, J., & Wu, J. (2019). Enabling secure voice input on augmented reality headsets using internal body voice. 2019 16th annual ieee international conference on sensing, communication, and networking (SECON) (pp. 1–9). IEEE. DOI: 10.1109/SAHCN.2019.8824980

Published

2024-09-02

How to Cite

Pourqasem, J. (2024). Transforming user experience in the metaverse through edge technology. Metaversalize, 1(1), 21-31. https://doi.org/10.22105/metaverse.v1i1.19