Energy-efficient communication in edge computing iot networks
Abstract
The rapid growth of Internet of Things (IoT) devices necessitates the development of energy-efficient communication strategies, particularly in edge computing environments where resource limitations are a primary concern. This paper presents a novel framework to enhance energy efficiency in edge computing IoT networks by integrating adaptive routing algorithms and data compression techniques. Our approach minimizes energy consumption while maintaining optimal data transmission rates and low latency. Extensive simulations and practical implementations demonstrate that our framework achieves up to 30% reduction in energy usage compared to traditional methods without compromising communication reliability. We also discuss the trade-offs between energy efficiency and network performance, providing valuable insights for various IoT applications. This research contributes to advancing sustainable IoT solutions, paving the way for more efficient edge computing systems.
Keywords:
Energy efficiency, Edge computing, Internet of things, Resource optimization, Latency reductionReferences
- [1] Shobanadevi, A., Maragathm, G., Gangadharan, S. M. P., Soni, M., Kumar, R., Tran, T. A., & Singh, B. K. (2022). Internet of things-based data hiding scheme for wireless communication. Wireless communications and mobile computing, 2022(1), 6997190. https://doi.org/10.1155/2022/6997190
- [2] Xie, Z., Song, X., Cao, J., & Xu, S. (2022). Energy efficiency task scheduling for battery level-aware mobile edge computing in heterogeneous networks. ETRI journal, 44(5), 746–758. https://doi.org/10.4218/etrij.2021-0312
- [3] Mohapatra, H., Kolhar, M., & Dalai, A. K. (2024). Efficient energy management by using sjf scheduling in wireless sensor network. International conference on advances in distributed computing and machine learning (pp. 211–221). Springer. https://doi.org/10.1007/978-981-97-1841-2_15
- [4] Mohapatra, H., Rath, A. K., Lenka, R. K., Nayak, R. K., & Tripathy, R. (2024). Topological localization approach for efficient energy management of WSN. Evolutionary intelligence, 17(2), 717–727. https://doi.org/10.1007/s12065-021-00611-z
- [5] Shao, S., Zhang, Q., Guo, S., Sun, L., Qiu, X., & Meng, L. (2022). Intelligent farm meets edge computing: energy-efficient solar insecticidal lamp management. IEEE systems journal, 16(3), 3668–3678. https://doi.org/10.1109/JSYST.2022.3174925
- [6] Raeisi-Varzaneh, M., Dakkak, O., Habbal, A., & Kim, B. S. (2023). Resource scheduling in edge computing: architecture, taxonomy, open issues and future research directions. IEEE access, 11, 25329–25350. https://doi.org/10.1109/ACCESS.2023.3256522
- [7] Ezenugu, I. A. (2020). Low-Energy Adaptive Clustering Hierarchy (Leach) Algorithm for selection of cluster head in wireless sensor nodes. Journal of multidisciplinary engineering science and technology (JMEST), 7(1), 2458–9403. www.jmest.org
- [8] Chinnaiah, K., & Rao, K. N. (2023). Swarm energy efficient power efficient gathering in sensor information systems protocol in wireless sensor networks. Indonesian journal of electrical engineering and computer science, 31(1), 459–469. https://doi.org/10.11591/ijeecs.v31.i1.pp459-469
- [9] Teshome, D., Yakob, D., & Tsegaye, E. (2021). Performance analysis and enhancement of contention-based sensors medium access control protocol in wireless sensor networks. International journal of computer networks and applications (IJCNA), 8(5), 465–476. https://doi.org/10.22247/ijcna/2021/209981
- [10] Dhaka, R. S., Khurana, M., & Lamba, S. (2024). Comparison of sensor-mac (s-mac), timeout-mac (t-mac), berkeley-mac (b-mac), and modified ml-mac (m2l-mac) for wireless sensor networks. Lecture notes in networks and systems (Vol. 1001 LNNS, pp. 454–471). Springer. https://doi.org/10.1007/978-3-031-60935-0_41
- [11] Li, L., Fang, Y., Liu, L., Peng, H., Kurths, J., & Yang, Y. (2020). Overview of compressed sensing: sensing model, reconstruction algorithm, and its applications. Applied sciences, 10(17), 5909. https://doi.org/10.3390/app10175909
- [12] Feng, A., Dong, D., Lei, F., Ma, J., Yu, E., & Wang, R. (2023). In-network aggregation for data center networks: A survey. Computer communications, 198, 63–76. https://doi.org/10.1016/j.comcom.2022.11.004
- [13] Sangaiah, A. K., Rostami, A. S., Hosseinabadi, A. A. R., Shareh, M. B., Javadpour, A., Bargh, S. H., & Hassan, M. M. (2021). Energy-aware geographic routing for real-time workforce monitoring in industrial informatics. IEEE internet of things journal, 8(12), 9753–9762. https://doi.org/10.1109/JIOT.2021.3056419
- [14] Shovon, I. I., & Shin, S. (2022). Survey on multi-path routing protocols of underwater wireless sensor networks: advancement and applications. Electronics, 11(21), 3467. https://doi.org/10.3390/electronics11213467
- [15] Han, B., Ran, F., Li, J., Yan, L., Shen, H., & Li, A. (2022). A novel adaptive cluster based routing protocol for energy-harvesting wireless sensor networks. Sensors, 22(4), 1564. https://doi.org/10.3390/s22041564
- [16] Saikia, P., Singh, K., Huang, W. J., & Duong, T. Q. (2024). Hybrid deep reinforcement learning for enhancing localization and communication efficiency in RIS-aided cooperative ISAC systems. IEEE internet of things journal, 11(18), 29494–29510. https://doi.org/10.1109/JIOT.2024.3411158
- [17] Mohammed, A. S., Saddi, V. R., Gopal, S. K., Jiwani, N., & Logeshwaran, J. (2024). Dynamic scheduling algorithms for serverless computing solutions in the cloud. 2024 international conference on e-mobility, power control and smart systems (ICEMPS) (pp. 1–7). IEEE. https://doi.org/10.1109/ICEMPS60684.2024.10559356
- [18] Nakabi, T. A., & Toivanen, P. (2021). Deep reinforcement learning for energy management in a microgrid with flexible demand. Sustainable energy, grids and networks, 25, 100413. https://doi.org/10.1016/j.segan.2020.100413
- [19] Hemalatha, K., Likitha, L. G., Sireesha, N., & Usharani, A. (2023). An IoT based interface for the smart watering of plants using soil moisture sensor. IRO journal on sustainable wireless systems, 5(2), 175–182. https://doi.org/10.36548/jsws.2023.2.008
- [20] Abdel-Gawad, M., Usama, M., Hesham, H., Ibrahim, O., & Abdellatif, M. M. (2022). Remote healthcare monitoring using wearable iot devices and cloud services. 2022 5th conference on cloud and internet of things (CIOT) (pp. 108–113). IEEE. https://doi.org/ 10.1109/CIoT53061.2022.9766591
- [21] Shabbir, A., Cheema, A. N., Ullah, I., Almanjahie, I. M., & Alshahrani, F. (2024). Smart city traffic management: acoustic-based vehicle detection using stacking-based ensemble deep learning approach. IEEE access, 12, 35947–35956. https://doi.org/10.1109/ACCESS.2024.3370867
- [22] Hadi, R. H., Hady, H. N., Hasan, A. M., Al-Jodah, A., & Humaidi, A. J. (2023). Improved fault classification for predictive maintenance in industrial IoT based on AutoML: A case study of ball-bearing faults. Processes, 11(5), 1507. https://doi.org/10.3390/pr11051507
- [23] Okafor, N. U., Alghorani, Y., & Delaney, D. T. (2020). Improving data quality of low-cost IoT sensors in environmental monitoring networks using data fusion and machine learning approach. ICT express, 6(3), 220–228. https://doi.org/10.1016/j.icte.2020.06.004
- [24] Shi, Y., Yang, K., Jiang, T., Zhang, J., & Letaief, K. B. (2020). Communication-efficient edge AI: algorithms and systems. IEEE communications surveys & tutorials, 22(4), 2167–2191. https://doi.org/10.1109/COMST.2020.3007787
- [25] Mitsis, G., Tsiropoulou, E. E., & Papavassiliou, S. (2022). Price and risk awareness for data offloading decision-making in edge computing systems. IEEE systems journal, 16(4), 6546–6557. https://doi.org/10.1109/JSYST.2022.3188997
- [26] Feng, C., Han, P., Zhang, X., Yang, B., Liu, Y., & Guo, L. (2022). Computation offloading in mobile edge computing networks: A survey. Journal of network and computer applications, 202, 103366. https://doi.org/10.1016/j.jnca.2022.103366
- [27] Zhang, S., Gu, H., Chi, K., Huang, L., Yu, K., & Mumtaz, S. (2022). DRL-based partial offloading for maximizing sum computation rate of wireless powered mobile edge computing network. IEEE transactions on wireless communications, 21(12), 10934–10948. https://doi.org/10.1109/TWC.2022.3188302
- [28] Kyung, Y., Kim, E., & Song, T. (2024). Opportunistic offloading scheme for content delivery service using electro-mobility networks. IET intelligent transport systems, 18(4), 591–598. https://doi.org/10.1049/itr2.12255
- [29] Ko, H., & Pack, S. (2020). Distributed device-to-device offloading system: design and performance optimization. IEEE transactions on mobile computing, 20(10), 2949–2960. https://doi.org/10.1109/TMC.2020.2994138
- [30] Babaghayou, M., Chaib, N., Maglaras, L., Yigit, Y., Ferrag, M. A., & Marsh, C. (2024). Proximity-driven, load-balancing task offloading algorithm for enhanced performance in satellite-enabled mist computing. Lecture notes of the institute for computer sciences, social-informatics and telecommunications engineering, lnicst (Vol. 527 LNICST, pp. 29–44). Springer. https://doi.org/10.1007/978-3-031-58053-6_3
- [31] Guo, K., Sheng, M., Tang, J., Quek, T. Q. S., & Qiu, Z. (2020). Hierarchical offloading for delay-constrained applications in fog RAN. IEEE transactions on vehicular technology, 69(4), 4257–4270. https://doi.org/10.1109/TVT.2020.2972734
- [32] Zhang, S., Yi, N., & Ma, Y. (2024). A survey of computation offloading with task types. IEEE transactions on intelligent transportation systems, 25(8), 8313–8333. https://doi.org/10.1109/TITS.2024.3410896
- [33] Hao, Y., Cao, J., Wang, Q., & Ma, T. (2021). Energy-aware offloading based on priority in mobile cloud computing. Sustainable computing: informatics and systems, 31, 100563. https://doi.org/10.1016/j.suscom.2021.100563