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1|Introduction 

The widespread deployment of Internet of Things (IoT) devices has transformed various domains, leading to 

the creation of intelligent environments in sectors such as smart homes, industrial automation, intelligent 

transportation, and healthcare. This unprecedented growth in the number of connected devices – from simple 
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Abstract 

The rapid proliferation of Internet of Things (IoT) devices has led to an exponential increase in the volume and 

velocity of data streams, necessitating real-time processing. Extracting actionable insights from these continuous data 

flows is essential for enabling intelligent decision-making across applications such as smart homes, industrial 

automation, and intelligent transportation systems. However, the resource-constrained nature of IoT devices and 

edge nodes—characterized by limited computational power, memory, and energy—presents significant challenges in 

achieving efficient and accurate data Stream Processing (SP). This paper presents a comprehensive review of state-

of-the-art approaches for effectively managing and processing IoT data streams. We examine various architectural 

paradigms, including edge computing and distributed SP systems, designed to handle high-throughput, low-latency 

data streams. Additionally, we explore advanced algorithms, such as machine learning and deep learning techniques 

optimized for real-time analysis, prediction, and anomaly detection, as well as Approximate Computing (AC) methods 

and specialized data structures like Bloom Filters (BFs) and sketches that enhance resource utilization and reduce 

memory overhead. Furthermore, this review highlights critical challenges in the field, including data privacy, security, 

scalability, and fault tolerance, while identifying promising research directions toward building more scalable, energy-

efficient, and intelligent IoT data SP systems. By synthesizing recent advancements and outlining future opportunities, 

this work serves as a valuable resource for researchers and practitioners seeking to address the complexities of real-

time IoT data analytics. 

Keywords: Internet of things, Data stream processing, Efficient algorithms, Edge computing, Anomaly detection, 
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  sensors and actuators to complex home appliances and smart vehicles – has led to the generation of 

unprecedented volumes and high-velocity continuous data streams [1]. Efficient processing of this massive 

flood of information is crucial for extracting timely insights and making informed decisions in critical 

applications, such as real-time fraud detection, predictive maintenance in industry, and remote patient 

monitoringTherefore, efficient algorithms and data structures are needed to enable the processing and 

Effective management of IoT data streams. Effective management is essential under these challenging 

conditions. There is a pressing need for new techniques that can perform the necessary computations and 

analyses close to the data source, intelligently summarize or filter data, and manage or store state or 

information with a reduced resource footprint. Approaches such as Approximate Computing (AC), which 

trade absolute accuracy for computational efficiency, and specialized Probabilistic Data Structures (PDS), 

such as Bloom Filters (BFs) and sketches, which can handle large datasets with minimal memory, have become 

increasingly important in this area [2], [3]. 

This review aims to provide a comprehensive and comparative analysis of the state-of-the-art in efficient 

algorithms and data structures for processing and managing IoT data streams, based on recent research. We 

aim to examine the various architectural paradigms, algorithms, and data structures that are being developed 

to address the challenges of limited resources and high-volume streaming data in IoT environments. By 

highlighting different approaches and their strengths and weaknesses, this review aims to provide a coherent 

overview of the current landscape and identify key areas for future innovation. 

This paper is organized as follows. Section 2 provides background and necessary introductions related to IoT 

data streams and processing principles. Section 3 reviews different architectural paradigms for processing IoT 

data streams, including edge computing and distributed Stream Processing (SP) systems. Section 4 reviews 

efficient algorithms for real-time analysis and focuses on techniques adapted for streaming data in resource-

constrained environments, including machine learning and anomaly detection methods. Section 5 examines 

the role of specialized data structures, such as PDS and approximation techniques, in optimizing memory and 

computation. Section 6 discusses key challenges inherent in efficient processing of IoT data streams, 

leveraging insights from anomaly detection and the general challenges of big data. Finally, Section 7 outlines 

promising future research directions and opportunities in this rapidly evolving field. 

2|Characteristics and Challenges of Internet of Things Data Streams 

IoT is rapidly becoming a vital and interconnected technological landscape consisting of a network of sensor 

devices [4]. This phenomenon represents a significant shift from the “Internet of People” to the “Internet of 

Things” that enables various objects to be wirelessly connected. Wireless Sensor Networks (WSNs) serve as 

a key infrastructure to support the IoT and facilitate intelligent data collection from diverse contexts [5]. Many 

edge devices and real-world objects are integrated with wireless sensors to monitor and collect real-time data. 

With the rapid adoption and development of IoT devices, the demand for data processing and transmission 

is continuously increasing, generating a massive volume of data streams at high speed. 

2.1|Nature of Internet of Things Data 

The data streams generated by IoT devices have distinct characteristics that pose specific challenges for 

processing [6]: 

I. Continuous: data is continuously generated and received over time. SP pipelines must be able to handle these 

continuous data streams from different sources. 

II. High volume: IoT devices generate a massive volume of data streams. The number of connected IoT devices 

is growing exponentially, with projections showing billions of devices worldwide. Working with large 

amounts of streaming time-series data can be a challenging task. 

III. High speed: data can be received at high speeds and at different flow rates. IoT data volumes must be 

transferred to cloud servers at maximum speed to provide real-time information. 
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  IV. Diversity: data can come from different sources in different formats, from IoT sensors to social networks. 

This diversity encompasses numerical values, text, images, sounds, videos, or a combination of these, which 

increases the complexity of processing. 

V. Temporal component: data often has a temporal component, which means the evolution of one or more 

variables over time. This characteristic creates the need to preserve the order of the data, handle out-of-order 

data, and use time windows for more accurate analysis, especially in forecasting problems. 

However, real-time processing of this data is not always straightforward. The large volume of data generated 

by IoT can lead to transmission collisions and energy waste due to data redundancy. Additionally, since 

devices may be vulnerable to security attacks or malfunctions, or unexpected events may occur, methods for 

detecting anomalies in data streams are crucial. 

2.2|Challenges from Limited Resources 

IoT devices, especially small sensors deployed in various environments, are often challenging to charge after 

deployment, resulting in significant energy waste. Processing and transmitting data from these devices is 

expensive and consumes a lot of bandwidth, energy, and time. Resource-constrained IoT devices have limited 

computational resources. These constraints necessitate new approaches that strike a balance between 

computational efficiency and acceptable accuracy, while also ensuring system performance and energy 

efficiency [7]. 

Traditional computing methods used in these devices are plagued by high energy consumption and low 

performance. Therefore, novel approaches such as AC techniques are essential for building a new generation 

of low-power IoT devices. By balancing computational efficiency with acceptable accuracy, AC offers 

significant improvements in energy efficiency, speed, and area for resource-constrained IoT devices. Specific 

examples of energy-saving strategies and resource-relief strategies in IoT include the use of BFs, 6T SRAM, 

Dynamic Voltage/Frequency Scaling  (DVFS) management techniques, IoT approximate processors, in-

memory computing, and DRAM refresh rate tuning. Despite these advances, sensor devices still face 

significant challenges in terms of energy consumption, cost, throughput, and accuracy. Optimal energy 

utilization is critical for time-sensitive applications enabled by WSNs. Traditional static sink-based approaches 

in WSNs suffer from energy inefficiency, high latency, and uneven load distribution, with nodes close to the 

sink draining energy faster and creating “Energy holes.” Hence, dynamic sink-based strategies are needed to 

optimize mobility, balance energy, and minimize query response time. 

3|Distributed Processing and Scalability in IoT Systems 

Managing and processing the massive amounts of data generated by the growing number of IoT devices poses 

significant challenges in terms of distributed processing and scalability. Traditional centralized architectures, 

where all data is transferred to the cloud for processing, can lead to data latency and pose privacy and security 

risks. This approach may also involve transmission issues, such as congestion, bandwidth limitations, and a 

single point of failure [8]. Therefore, there is a need for an efficient and secure architecture for local data 

processing to reduce the cloud server's processing load and provide data redundancy at the cluster level. 

Decentralized architectures for IoT networks are needed to provide local storage, computation, and 

protection to overcome the limitations of centralized cloud systems. 

Edge computing, as an emerging technology, has emerged as a key component in solving these challenges. It 

is considered an extension of cloud server services that moves cloud storage and processing power to the 

edge of the IoT network, closer to the sources of data generation [9]. The importance of processing data close 

to the source stems from several critical factors: 

I. Latency reduction: processing data at edge nodes significantly reduces latency, which is critical for 

applications that require real-time feedback and fast response (such as autonomous driving). 
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  II. Bandwidth optimization: preprocessing data at the edge and sending only the necessary information to the 

cloud can significantly reduce data traffic and save bandwidth, which is especially important in IoT where 

devices generate many data. 

III. Increased data privacy and security: processing data locally at the edge reduces the transmission of sensitive 

data, thereby improving data security and privacy. 

IV. Cloud server load reduction: processing data locally at edge nodes helps reduce the computational load, 

storage requirements, and network traffic of the cloud. The edge server can reduce the load on the cloud 

server by serving frequently used services in its own cache. 

V. Improved energy efficiency: edge computing can help address energy consumption challenges in IoT devices. 

VI. Fault tolerance: processing data locally ensures a degree of autonomy for the system, even when cloud 

services are unavailable. 

Fog computing also offers advantages in data SP for IoT by processing data closer to its sources, thereby 

reducing latency and increasing network capacity [10]. Integrating edge, cloud, and high-performance 

computing environments is essential for processing significant data streams to ensure low latency and high 

throughput. 

However, this distributed processing paradigm comes with its own challenges. One of the main challenges is 

communication scalability, which requires efficient strategies to manage large data transfers between 

distributed nodes [8]. It is crucial to deploy edge nodes securely and efficiently and to ensure reliable 

communication between edge nodes and the cloud server. Also, implementing data flow pipelines on low-

end IoT hardware and managing these pipelines in a decentralized manner pose challenges. In data flow 

applications that adopt architectures such as serverless computing, it becomes crucial to address the challenges 

of managing stateful operations, coordinating resources in a volatile distributed environment, and ensuring 

low latency with inherent uncertainty. 

3.1|The Role of Edge AI and Approximate Query Processing 

The rapid adoption of IoT devices and the increasing advancement of Artificial Intelligence (AI) underscore 

the growing importance of processing IoT data streams at the network edge and integrating AI into them 

[11]. Edge AI, which is a combination of edge computing and AI, not only changes the way data is processed 

but also opens up unprecedented opportunities for various application scenarios [12]. AI enables autonomous 

data analysis and decision-making directly on edge devices, thereby reducing the dependency on cloud servers. 

This makes the processing of many traditional applications that were previously difficult relatively simple. 

AI-based edge computing is crucial for optimizing decision-making in various IoT applications: 

I. In everyday life, autonomous driving is a prime example, where AI models on vehicle equipment make 

driving decisions using sensor data processed through edge computing technology. 

II. Smart furniture, such as cameras and home robots, uses AI and edge computing to provide personalized 

services and security. 

III. In the industrial IoT environment, the combination of edge computing and AI plays a vital role in production 

lines, enabling equipment failure monitoring and prediction and preventive maintenance. 

However, the actual deployment of edge AI still faces many challenges. These challenges include limited 

computing resources on edge devices, which are generally less than those of cloud servers. Implementing 

large and complex AI models on edge devices requires developing larger and more efficient models, as well 

as considering hardware accelerators. Energy efficiency of edge computing is also a challenge, as most devices 

rely on battery power, and highly optimized AI algorithms can still generate significant energy consumption. 

In the context of processing data streams generated by IoT devices, the need for fast query response is critical, 

especially in real-time environments. Approximate Query Processing (AQP) emerges as a crucial strategy for 

overcoming the challenge of efficiently processing large, high-speed data streams while providing timely query 
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  responses [13]. AQP operates on the principle of sacrificing a degree of accuracy in exchange for increased 

performance and improved energy efficiency. This approach is particularly beneficial for applications where 

absolute, precise results are not strictly required or where a certain degree of imprecision can be tolerated 

without significantly impacting the overall outcome. Key techniques used in AQP to achieve this balance 

include: 

I. Sampling: involves analyzing a representative subset of data rather than processing the entire data set, which 

can significantly reduce computational complexity and speed up processing time. 

II. Sketching: use of PDS to summarize large data sets in a quantitative space, providing approximate answers 

to queries with probabilistic error bounds. Examples include BFs for Approximate Membership Queries 

(AMQ), Count-Min Sketch (CMS) for frequency estimation, and HyperLogLog (HLL) for cardinality 

estimation. 

III. Aggregation-based approaches: perform aggregation operations on summarized data (such as samples or 

sketches) rather than on the raw data. Data aggregation in IoT sensor networks is critical to reducing data 

redundancy and saving energy. 

AQP finds significant applications in big data visualization. As the size of data sets increases, traditional 

visualization models struggle to provide fast, efficient, and interactive representations. Approximate 

visualization techniques, such as those based on sampling, bridge the gap between massive amounts of data 

and interactive presentation by accelerating the process and increasing performance. 

As a result, edge computing, edge AI, and AQP are critical to enabling efficient, low-latency, secure, and 

energy-aware processing of the massive data streams generated by IoT devices. By moving computation and 

decision-making to the data source, they address key challenges of centralized cloud architectures and unlock 

the full potential of real-time IoT applications across various domains. 

4|Lightweight and Efficient Data Structures 

Processing the massive, continuous data streams generated by IoT devices requires the use of data structures 

that are not only efficient in terms of computational speed but also remarkably lightweight in terms of memory 

and energy consumption. This is mainly due to the inherent hardware limitations of many IoT and edge 

devices, which often operate with limited processing power, low memory capacity, and tight energy budgets. 

Traditional, memory-intensive data structures designed for powerful servers may be impractical or impossible 

to deploy effectively in these resource-constrained environments. Therefore, there is a significant need for 

data structures that can provide valuable insights from data streams with minimal overhead. 

4.1|Probabilistic Data Structures 

To overcome the challenge of limited resources while still supporting fast queries on large data streams, PDS 

offers an attractive solution. PDSs are data structures that provide approximate answers to queries, typically 

with a probabilistic guarantee of error, while utilizing significantly less memory and computational resources 

than deterministic data structures that provide exact answers. They are particularly well-suited for scenarios 

where a level of inaccuracy is acceptable in exchange for a significant increase in performance. 

 A BF is a space-efficient PDS used to test whether an element is a member of a set [14]. A key feature of 

BFs is that they may yield false positives (indicating the presence of a component when it is not) but never 

false negatives (an aspect that is in the set is always reported as present). This one-sided error guarantee is 

critical in many applications. BFs are renowned for their compactness and efficiency in determining 

membership and are widely utilized in various fields, including IoT, networking, databases, and 

bioinformatics. Their space efficiency and fast membership queries make them valuable in scenarios where 

memory is a significant constraint. In the context of IoT, BFs are widely used, especially in wearable 

electronics, where battery life is a considerable concern. 
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  A recently proposed class is the Learned Bloom Filter (LBF), which combines the CBF with a learning model 

LBF aims to provide the same one-sided error guarantee as CBF but with potentially better performance for 

the same memory budget [15]. A Standard Learned Bloom Filter (SLBF) uses a learning model as a prefilter 

before a supporting CBF. The supporting CBF is queried only for inputs that the learning model predicts are 

not in the set, which ensures that the critical completeness property (no false negatives) is maintained 

throughout the entire structure. 

While efficient, the use of BFs in IoT and other applications also raises concerns about privacy. Research has 

shown that CBCs can be vulnerable to set reconstruction attacks, where an attacker with access to the internal 

state of the filter may be able to infer the original set with high probability. Addressing the privacy of data 

stored in a BF has been identified as a significant open problem. Recent work provides a detailed differential 

privacy-based analysis of BFs. It is also noted as the first work to analyze and address the privacy of learned 

BFs under any exact model. Privacy-preserving algorithms, such as Nickel and Dime [16], have been proposed 

based on random response mechanisms. These algorithms modify the input set stored by the BF rather than 

modifying the internal state. Nickel adds privacy without compromising the one-way error guarantee of BF, 

while Dime introduces a significant trade-off in terms of false negative probability. 

Challenges in BF design include managing the trade-off between the false positive rate and memory space, 

selecting optimal hash functions, accommodating their predefined size that is difficult to change for large or 

growing datasets, and handling element deletion. Despite these challenges, efforts continue to refine these 

structures for better performance and security in resource-constrained environments. An enhanced Bloom 

filter (eBF) has been developed specifically for intrusion detection in IoT networks, demonstrating significant 

memory savings over standard BFs and other variants while maintaining fast and accurate performance. A 

lightweight BF accelerator for IoT applications has also been implemented using hardware such as FPGAs. 

It is. 

4.2|Other Possible Data Structures and Schemas 

Beyond BFs, several other data structures are well-suited to handling the continuous and often extensive 

nature of data streams, particularly those used in AQP and data summarization. Sketching data structures is 

a family of structures designed to summarize large data sets in a small amount of space [17]. They are valuable 

for providing approximate answers to queries and for data compression. Sketching-based data structures are 

a common technique for estimating frequencies in data streams, including the Count Sketch (CS), the CMS, 

and the Count-Mean-Min Sketch (CMMS). For example, the Count-Min Sketch effectively trades off accuracy 

for a significant reduction in memory consumption, making it a powerful solution for estimating item 

frequency in large datasets where precise storage is impossible. However, CMS can suffer from overestimation 

due to hash collisions, and its accuracy depends on the quality of the hash functions used. Count-Sketch is a 

viable alternative that supports decrement operations and negative counts, which CMS lacks. These constructs 

are critical for querying continuous data streams with limited resources, as they maintain compact summaries 

for efficient estimation of query results. 

Another important PDS is the HLL. HLL is a mighty approximation algorithm used to estimate the cardinality 

(number of unique elements) of a large set [18]. It provides reasonably accurate estimates with much less 

memory than methods that require storing all elements. HLL is utilized in network monitoring, web analytics, 

data analysis, and database management. Like CMS, HLL has limitations, such as not supporting element 

deletion; however, variants like the sliding HLL address this problem. An extension called KHyperLogLog 

(KHLL) is used to estimate re-identifiability and joinability risks in large databases. 

5|Algorithmic and Hardware Design 

Approximate Calculations (AC) is a paradigm that significantly impacts the design of both algorithmic and 

hardware systems, particularly in resource-constrained IoT environments [2]. Given the inherent hardware 

limitations of many IoT and edge devices, such as limited processing power, memory, and energy budgets, 
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  traditional computational approaches designed for more powerful systems are often impractical. AC offers a 

way to enable complex computational tasks on these devices by strategically sacrificing a degree of accuracy 

in exchange for increased efficiency, including speed, reduced energy consumption, and reduced resource 

usage. 

5.1|Hardware Design 

Processing massive, continuous data streams can be applied at different levels of the hardware stack to 

improve the performance of IoT applications: 

Circuit level: a critical focus is on redesigning basic arithmetic units such as adders, multipliers, and dividers. 

These units are central to many fault-tolerant applications. By designing approximate versions, significant 

reductions in power consumption, area, and latency can be achieved. Examples include various types of 

approximate adders, multipliers, and dividers. Hardware implementations of primitive and activation 

functions, which are critical to many algorithms, including those used in IoT, also benefit from approximation 

techniques. Approaches such as lookup tables, polynomial approximation, shift-and-add algorithms (such as 

CORDIC), and hybrid methods are employed, often sacrificing speed/area for improved accuracy [19]. 

Architecture level: design of specialized approximate processing units and memory systems is essential. 

I. Approximate memory: techniques are being explored to make memory systems more energy efficient. These 

include voltage scaling for SRAMs, reducing refresh rates for DREAMs, and compressing or encoding data 

before storage. These methods leverage fault tolerance in applications. For IoT devices, especially those that 

rely on battery power or operate with limited memory, approximate memory designs such as fault-tolerant 

configurable SRAMs and refresh-free DRAM techniques are being developed. 

II. Approximate processors and accelerators: these are integrated units designed with controlled imprecision to 

increase computational efficiency. Low-power architectures such as ARM and open source RISC-V are being 

explored for IoT approximate processors, specifically for tasks such as machine learning. Accelerators such 

as TPUs, which use reduced precision, represent an architectural approach. 

III. DVFS management: techniques such as DVFS, Voltage Over Scaling (VOS), dynamic power management 

(DPM), and near-threshold voltage (NTV) operation are widely used in IoT to save energy. These methods 

use idle times or reduce voltage/frequency at the cost of potential faults, which can be managed in fault-

tolerant applications. 

Data level (hardware aspects): the use of approximate data types and data structures directly affects the 

hardware requirements for storage and manipulation. Techniques such as precision scaling (using fixed-point 

or floating-point with lower precision) and quantization reduce memory and computational costs. These are 

critical for deploying models on resource-constrained edge devices. Hardware accelerators such as GPUs and 

TPUs are designed to handle reduced-precision formats efficiently. 

5.2|Algorithm Design 

AC also impact algorithm design, making them suitable for implementation on resource-constrained IoT 

hardware: 

Software level: algorithms can be designed or modified to introduce approximations into their code. This 

includes identifying non-critical computations where accuracy can be degraded. Techniques include 

computation skipping (e.g., perforation loops or selective skipping of instructions), iterative refinement (early 

stopping iterations), function approximation (replacing exact functions with approximate functions, possibly 

using neural networks), pruning (removing redundant parts of models such as neural networks), and lazy 

synchronization in parallel algorithms to reduce waiting times. These methods trade off performance and 

error. Approximate memoization techniques can store and reuse approximate results for similar inputs, 

reducing redundant computation. 
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  Data level (algorithmic aspects): designing algorithms that operate on approximate data representations is key. 

Data sampling algorithms analyze representative subsets of large datasets or streams to provide faster, 

approximate results with defined error bounds. PDSs are inherently algorithmic and are designed for 

approximate queries with minimal memory overhead. BFs are used for approximate membership testing, 

while sketch data structures (e.g., CMS, HLL) are employed for frequency estimation and cardinality counting 

in data streams, and MinHash is used for set similarity estimation. These structures enable efficient data 

processing and summarization on devices with limited resources. 

5.3|Co-Design and Frameworks 

Effective use of AC for IoT often requires a cross-layer co-design approach, integrating techniques at the 

hardware, architecture, software, and data levels. Frameworks and tools are being developed to support this, 

helping designers manage the trade-off between accuracy and efficiency and automating the process of 

identifying approximation opportunities and applying techniques. For example, Approximate Logic Synthesis 

(ALS) tools automate the design of approximate digital circuits. 

In essence, AC enables the design of specialized and resource-efficient hardware components and systems, 

while also guiding the development of algorithms that can operate effectively with controlled imprecision on 

these limited platforms. This dual effect is critical to enabling the deployment of complex data processing and 

AI tasks on the growing number of IoT devices. 

Table 1. Comparison of high-level approaches to approximate calculations. 

 

 

Level of 
Abstraction 

Common 
Techniques 

Key Benefits Common 
Exchange 

Typical 
Application Areas 

Fault-tolerant 
applications, power-
constrained IoT 
devices, digital 
circuits 

Loss of accuracy 
(controllable), design 
complexity 

Significant reduction 
in power 
consumption, area 
and latency 

Redesign of 
arithmetic units 
(adders, multipliers, 
approximate 
dividers), elementary 
functions/approxim
ate activation 
(lookup tables, 
CORDIC) 

Circuit 

Resource-
constrained IoT 
devices, machine 
learning at the edge, 
battery-life-critical 
applications 

Controlled 
inaccuracy, potential 
errors, verification 
challenges 

Energy efficiency, 
computational 
efficiency, reduced 
memory footprint 

Approximate 
memory (SRAM 
voltage scaling, 
DRAM refresh rate 
reduction), 
approximate 
processors/accelerat
ors (low-power IoT 
processors, reduced-
precision TPUs), 
DVFS management  

Architecture 

Deploying AI 
models on edge 
devices, processing 
big data 

Loss of accuracy, 
need for hardware 
support 

Reduced memory 
and computing 
costs, efficient 
storage 

Precision scaling 
(fixed/floating point 
with lower 
precision), 
quantization 

Data (Hardware 
Aspects) 
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  Table 1. Comparison of high-level approaches to approximate calculations. 

 

AC (AxC) is a growing paradigm that strategically trades off accuracy in exchange for higher performance 

(speed, energy efficiency, memory footprint). This approach is particularly well-suited for resource-

constrained IoT environments and fault-tolerant applications. The following table compares high-level 

approaches to AC based on their level of abstraction, standard techniques, main advantages, trade-offs, and 

application areas, using information provided in the references. 

6|Challenges and Future Directions 

AC and related efficiency paradigms offer significant potential for enhancing the performance and energy 

efficiency of systems, especially in resource-constrained IoT environments. However, fully realizing the 

benefits of these approaches involves overcoming several complex challenges and identifying promising 

avenues for future research. 

6.1|Existing Challenges 

Despite advances in approximate computation and efficiency paradigms, several challenges remain, especially 

when applied to the dynamic and resource-constrained nature of IoT: 

I. Scalability, security, and privacy in IoT data SP: the rapid adoption and development of IoT devices is leading 

to the growing trend of edge computing, which is changing the way data is processed. Edge computing brings 

more innovative solutions to various application scenarios in IoT. However, the resource and energy 

efficiency of edge computing has certain limitations. With the increasing use of IoT end devices, a massive 

amount of sensor data is being generated. Managing this significant volume of data is a major challenge. Data 

centers, such as cloud computing storage spaces, are struggling to provide the necessary resources for 

transmission due to the explosion in data volume. The growing number of connected IoT devices is 

increasing exponentially. This growth brings new challenges for data processing and transmission. 

Security and privacy issues are significant concerns in IoT environments. The integration of edge computing 

and AI can significantly enhance the data privacy and security concerns that are of most concern to 

individuals. Edge computing enables local data processing, reduces the transmission of sensitive data, and 

thereby enhances data security. Edge computing provides unprecedented opportunities for many application 

Level of 
Abstraction 

Common 
Techniques 

Key Benefits Common 
Exchange 

Typical 
Application Areas 

Machine learning 
algorithms, parallel 
algorithms, analytical 
programs 

Loss of precision, 
error handling, 
coding complexity 

Increased 
performance, 
reduced overhead, 
faster execution time 

Skipping 
computations (e.g. 
loop perforation), 
iterative refinement 
(early stopping 
iterations), function 
approximation, 
pruning, lazy 
synchronization, 
approximate 
memoization[7] 

Software 

Data flow analysis, 
approximate queries, 
resource-constrained 
devices, membership 
testing, frequency 
estimation 

Possible errors, 
controlled 
imprecision, need 
for optimal hash 
functions 

Faster approximate 
results, minimal 
memory overhead, 
efficient data 
processing/summari
zation 

Data sampling 
algorithms, PDS 
such as BFs (for 
membership 
queries), sketching 
structures such as 
CMS (for 
frequency/cardinalit
y estimation), 
MinHash 

Data (Algorithmic 
Aspects) 
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  scenarios, including improved data privacy and secure management. Strong security measures are increasingly 

necessary in applications such as autonomous driving, innovative furniture, and industrial automation. 

Existing decentralized architectures for large-scale IoT networks have not consistently addressed security and 

privacy concerns. Traditional cloud servers employ a centralized architecture that connects IoT devices for 

processing and storage, which can lead to transmission issues, security vulnerabilities, or a single point of 

failure. A decentralized architecture is required to manage security and energy-related issues in IoT-based 

networks. Blockchain technology has been widely researched due to its decentralized nature and its potential 

to protect IoT devices from security threats and rogue service providers. 

The security implications of approximation computations, especially in sensitive applications, require careful 

consideration. AC can complicate reverse engineering, but it can also introduce new target areas for hardware 

trojans in circuits that control approximation levels. Assessing the security of approximation circuits is 

challenging because their defenses against passive side-channel attacks can vary with voltage-frequency 

settings. Approximation circuits may be vulnerable to fault injection attacks, especially at operational limits, 

although the full effects and effectiveness of countermeasures are still unclear. Processing-In-Memory (PIM) 

introduces changes to security models due to architectural modifications, programming models, side-channel 

vulnerabilities, device reliability concerns, and potential hardware trojans. Developing secure and privacy-

preserving AC methods is a critical area of future research. 

II. Heterogeneous and incomplete data management: anomaly detection in bright environments, often based 

on IoT data streams, is challenging due to complex dynamics. Commonly encountered challenges include 

scarcity (e.g., lack of labeled data, unbalanced datasets) and complexity (e.g., noisy data, high dimensionality, 

conceptual drift). Contextualization challenges arise from the need to consider complex relationships 

between influencing factors to distinguish abnormal events from regular events under specific conditions. 

Data streams can originate from various sources in different formats, making their processing unwieldy, 

especially in real-time applications. The diversity of data that can be received increases the complexity of 

working with big data. Managing out-of-order and delayed data is a fundamental challenge in SP. 

Data transmission delays due to distributed sensors and diverse communication channels are a critical 

challenge in industrial IoT anomaly detection, making models essential to account for these delays to ensure 

accurate real-time detection. Managing the temporal aspects of data, particularly the order of streams and 

handling out-of-order data, is crucial for accurate and timely data analysis. Integrating stored (historical) and 

streaming data is also a key aspect of data management. 

III. Ensuring Quality of Service (QoS) in dynamic environments: satisfying Quality of Service (QoS) under 

workload changes has been a long-standing research challenge in SP systems. Stream processors lack control 

over the rate of incoming events and must be adaptable to handle the load. Ensuring predictable results and 

maintaining real-time response are essential requirements for real-time SP. Scalability, the ability of a system 

to handle growing workloads without compromising performance, is critical and can be achieved through 

scale-in, scale-out, and scale-up strategies. 

Fault tolerance and rapid recovery are crucial for maintaining high availability and data integrity in SP. 

Consistent SP is an open research problem due to the challenging nature of processing unbounded streams 

in a distributed setting. High availability is addressed through various replication approaches. 

Approximate computations essentially involve a trade-off between accuracy and efficiency (speed and energy 

consumption). Managing this trade-off is a key challenge in approximate programming. For approximate 

memory, a careful evaluation is necessary to achieve a balance between the benefits of minimizing accuracy 

and the degree of precision required for a particular application. ALS faces the challenge of accommodating 

varying accuracy requirements while managing power and delay variations. Designing high-quality, 

configurable circuits that can be tuned to different levels of accuracy in real-time is required. 

In dynamic WSN scenarios, the computational efficiency of query processing relies on lightweight 

optimization approaches that ensure consistency. Ensuring efficient and reliable data delivery services, as well 
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  as longer network lifetime, are critical issues in mobile sensor networks. This requires a balance between 

efficient data transmission and energy conservation. 

6.2|Future Research Directions 

Based on the current landscape and existing challenges, several promising avenues for future research emerge: 

6.2.1|Deeper integration of AI and machine learning with stream processing at the edge 

The combination of edge computing and AI is changing the way data is processed and providing 

unprecedented opportunities for many application scenarios. AI-based edge computing is driving the 

development of the IoT. Deploying AI algorithms on edge devices to process data can greatly achieve low 

latency, high performance, and high privacy protection. 

AI-based edge computing is having a significant impact on the development of the IoT. AI plays a 

fundamental role in delivering scalable results on real-world big data. Machine learning enhances IoT by 

analyzing vast data sets for actionable insights, which is critical for applications such as wearables and smart 

devices. Embedded processing close to the sensor is often preferred over cloud computing due to privacy, 

latency, and bandwidth constraints. 

Future research emphasizes the need for scalable and lightweight solutions for anomaly detection to adapt to 

environments with limited computing power, ensuring efficient and real-time performance on edge devices. 

AC is well-suited for machine learning and AI applications at the edge, where small precision losses can be 

tolerated for significant performance gains. Future research directions include the development of real-time 

analytics and algorithms for Big Data time series streams, particularly the application of machine learning and 

deep learning algorithms for online education to facilitate real-time analysis, prediction, and anomaly 

detection. 

6.2.2|Further development of PDS and AQPs for more complex IoT scenarios 

PDS that provide approximate answers to membership queries, such as BFs, are common. Extending privacy-

preserving structures to other PDSs, such as (CMS), is a direction for future work. 

Approximate data structures, such as BFs or (CMS), are helpful in saving resources and time by providing 

probabilistic capabilities. These structures enable efficient data processing and summarization on devices with 

limited resources. Sampling techniques play an essential role in stream analysis, providing faster and 

approximate results with estimated error limits. AQP provides fast and approximate answers to queries on 

large datasets using techniques such as sampling. 

Future research should prioritize the efficiency of query processing techniques in WSNs by developing 

methods that adjust to changing network conditions and dynamic application needs, ensuring continuous 

optimization in dynamic IoT contexts. 

New approaches to co-optimization of energy, latency, and accuracy: Approximate computation is a 

promising paradigm that achieves significant improvements in reducing overhead costs (energy, area, and 

latency) at the cost of acceptable accuracy degradation. Error metrics are emerging as a new design parameter 

that can be traded off to increase performance or reduce energy consumption. AC offers significant 

improvements in power and performance by reducing numerical parity for fault-tolerant applications. 

Effective use of AC requires a cross-layer co-design approach that integrates techniques at the hardware, 

architecture, software, and data levels. Cross-layer approaches have emerged as a powerful tool for 

intelligently combining approximation techniques to maximize efficiency gains while meeting user-defined 

quality constraints. These can lead to significant improvements in speed, power consumption, and overall 

optimization. 
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  Approximate adders are designed to optimize power consumption, area, and latency while allowing for 

controlled imprecision. Approximate multipliers aim for low power, high performance. Approximate dividers 

solve the problems of high latency, large area, and power consumption through imprecise calculations. 

DVFS management techniques dynamically adjust voltage and frequency to optimize power consumption 

and performance based on the workload. AxC techniques, such as voltage scaling and reduced precision in 

memory and processing units, contribute to energy efficiency. 

Shannon-inspired statistical computing leverages the statistical properties and integrated computation in 

memory/sensor arrays to create robust and energy-efficient systems that ensure reliability even in the presence 

of hardware noise/errors, and enable operation at lower SNR levels. Integrating this with AC increases 

robustness, consistency, and energy efficiency. 

Dynamic and adaptive approximation techniques that can adjust the approximation level based on application 

requirements, input data characteristics, and available resources are a new future direction. This ensures an 

optimal trade-off between accuracy and performance. 

In the context of query processing in WSNs for IoT, dynamic strategies aim to increase scalability, reliability, 

and energy efficiency by optimizing sink mobility and balancing energy consumption. DSQPS aims to 

minimize query processing latency, reduce average energy consumption, and increase network lifetime and 

throughput. Future research should explore sophisticated algorithms for low-power routing of moving wells. 

Addressing these challenges and exploring the aforementioned future directions will be crucial to unlocking 

the full potential of approximation computing and other efficiency paradigms in the complex and dynamic 

IoT landscape. 

7|Conclusion 

In conclusion, this review provided a comprehensive analysis of the state-of-the-art algorithms and data 

structures for processing and managing the vast data streams generated by the IoT. We established that the 

exponential growth of connected devices has necessitated a paradigm shift from traditional centralized cloud 

architectures to decentralized models like edge and fog computing. These paradigms were shown to be crucial 

for reducing latency, optimizing bandwidth, enhancing privacy, and lowering the computational load on cloud 

servers, thereby enabling real-time applications in domains such as autonomous driving and industrial 

automation. To operate within the resource-constrained nature of IoT and edge devices, we identified several 

essential techniques. Key strategies examined included AC, which traded controlled accuracy for significant 

gains in energy and performance, and the use of lightweight PDS like BFs and sketches to manage massive 

data volumes with minimal memory overhead. Furthermore, we explored how the integration of Edge AI 

enabled autonomous data analysis and decision-making directly on devices, reducing dependency on the cloud 

and allowing for more intelligent and responsive systems. 

Despite these significant advancements, our analysis highlighted that several challenges persist, defining the 

trajectory for future research. Ensuring data privacy and security remains a primary concern, particularly as 

decentralized architectures and approximate data structures introduce new vulnerabilities. The inherent 

complexity of managing heterogeneous, incomplete, and out-of-order IoT data streams continues to pose 

difficulties for real-time analytics. Future work, therefore, should focus on several promising directions to 

address these issues. This includes the deeper integration of AI and machine learning at the network edge, 

enabling more sophisticated and low-latency analytics. There is also a critical need to develop more advanced 

PDS and AQP techniques that can handle complex IoT scenarios while offering stronger privacy guarantees. 

Finally, a continued emphasis on cross-layer co-design approaches—holistically optimizing hardware, 

software, and algorithms—will be essential to adaptively balance the trade-offs between accuracy, 

performance, and energy efficiency, ultimately unlocking the full potential of real-time IoT data analytics. 
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