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1|Introduction    

The rapid growth of Internet of Things (IoT) networks has reshaped device communication, connecting 

billions of devices across applications like smart homes, healthcare, and industrial automation [1], [2]. This 

connectivity demands low-latency networks to ensure efficient data flow and responsiveness. Traditional 

routing methods struggle to meet these real-time requirements as IoT networks continuously adapt to devices 

joining or leaving. 
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Abstract 

With the swift expansion of Internet of Things (IoT) networks, it has become crucial to ensure real-time, low-latency 

communication, especially in vital areas such as autonomous vehicles, industrial automation, and healthcare. 

Conventional routing protocols, like Ad hoc On-Demand Distance Vector (AODV) and Destination Sequenced 

Distance Vector (DSDV), often fail to remain efficient in the dynamic and distributed nature of IoT, leading to 

considerable communication delays. This paper explores AI-enhanced routing strategies that dynamically optimize 

data paths by evaluating real-time network conditions and learning from past data. The study utilizes essential AI 

techniques, including machine learning-driven decision-making, Reinforcement Learning (RL) for adaptive route 

management, and AI-assisted congestion management, to improve real-time routing choices. Our results indicate 

that these AI-based methods successfully reduce latency and enhance network performance, rendering them suitable 

for latency-critical IoT applications. Furthermore, AI-enabled routing shows potential for adjusting to network 

changes and device mobility, thus ensuring sustained low latency. Future studies will aim at expanding these 

approaches to larger networks and strengthening their security to ultimately meet the increasing requirements of real-

time IoT systems.  
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  Consequently, researchers are exploring AI-driven routing solutions that can dynamically optimize paths, 

minimize delays, and support the responsive interactions that IoT applications need for seamless performance 

in diverse environments [3]. Fig. 1 shows IoT network architecture. 

Fig. 1. IoT architecture. 

Despite the promise of IoT, traditional routing protocols, such as Ad hoc On-Demand Distance Vector 

(AODV) [4] and Optimized Link State Routing (OLSR) [5], face substantial limitations in dynamic 

environments where devices frequently join or leave the network. These protocols often struggle to maintain 

optimal routing efficiency under varying network conditions, leading to increased latency and degraded 

performance. These limitations become more pronounced as IoT applications grow in scale and complexity, 

especially when supporting real-time services like remote monitoring and automated controls. The static 

nature of traditional protocols limits their adaptability, making it difficult to respond promptly to sudden 

changes in network topology. Moreover, these protocols cannot effectively anticipate and address congestion 

or link failures without predictive capabilities. To overcome these challenges, researchers are adopting AI-

driven routing methods that can dynamically adapt, learning from network patterns to deliver low-latency, 

reliable communication across ever-changing IoT landscapes [6], [7]. 

Fig. 2. Routing strategies in IoT networks. 
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  Table 1. Issues associated with routing strategies. 

Challenges Description 

Power and payload IoT devices often lack the processing power and storage to run complex AI 
algorithms for low-latency routing. 

Dynamic network 
 

IoT networks in mobile environments are highly dynamic, complicating AI 
model applications that depend on stable structures for routing. 

Energy efficiency IoT devices have limited power, and continuous AI processing for routing can 
quickly drain energy, reducing device lifespan and network reliability. 

Data Security Routing algorithms rely on real-time IoT data, posing security and privacy risks. 

 

The paper is structured as follows. Section 2 provides a literature review of different routing strategies. Section 

3 discusses the challenges associated with routing strategies, while Section 4 highlights the limitations of 

various routing strategy algorithms. Section 5 explores potential improvements in these algorithms to enhance 

efficiency and fault tolerance. Finally, Section 6 summarizes the key findings, future research directions, and 

references. 

2|Literature Review 

The concept of AI-driven routing in IoT networks is rooted in the growing complexity of managing large-

scale device connections while maintaining low-latency communication. Traditional routing protocols such 

as AODV and Destination Sequenced Distance Vector (DSDV) have served well in static or less dynamic 

environments. Still, they are increasingly inadequate for IoT networks' highly dynamic, resource-constrained 

nature. 

Table 2. Routing strategies classification. 

 

 

2.1|AI-Powered Routing Strategies 

2.1.1|Reinforcement learning 

Reinforcement Learning (RL) is a strategic approach encompassing various algorithms, including Q-learning 

and Deep Q-learning  Networks (DQN) [8], employed to optimize routing paths in dynamic IoT networks. 

Here’s a breakdown of the steps involved in implementing one of these algorithms. 

 

 

 

ML-based routing uses 
machine learning to predict 
optimal paths, reducing 
latency and conserving energy. 
This makes it ideal for 
dynamic IoT networks. 

Continuously learns and adjusts to 
changing network conditions for optimal 
performance. 
It predicts efficient routes, reduces latency, 
and conserves energy, making it ideal for 
resource-constrained IoT devices. 

Examples of machine 
learning: supervised and 
unsupervised. 
 

Reinforcement Learning 
(RL)** is a machine learning 
method where an agent learns 
by interacting with an 
environment, aiming to 
maximize rewards over time. 

Aims to maximize long-term rewards, 
achieving efficient outcomes. 
Handles complex, high-dimensional 
problems well with appropriate algorithms. 

Examples: Q learning, 
deep Q-networks, 
SARSA 
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  Algorithm 1. Q learning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 shows the flow chart of the Q-learning algorithm. 

Fig. 3. Q-learning algorithm flow-chart. 

 

2.1.2|Deep Q-network algorithm 

RL is a strategic approach encompassing various algorithms, including Q-learning and DQN, employed to 

optimize routing paths in dynamic IoT networks. Here’s a breakdown of the steps involved in implementing 

one of these algorithms. 

1. Initialize Q-Table: Set up a Q-table with initial values for each state-action pair. 

2. Set Parameters: Define the learning rate α, discount factor γ, and exploration 

rate ϵ. 

3. Loop Until Convergence: Repeat the following steps for each episode. 

4. Observe Current State: Begin in an initial state. 

5. Choose Action: Select an action using either exploration (random choice) or 

exploitation (highest Q- value). 

6. Take Action and Observe Reward: Execute the chosen action, move to a new 

state ′, and receive a reward r. 

7. Update Q-Value: Update Q(s, a) using the Q-learning formula based on the 

reward and future Q-values. 

8. Set New State: Update the current state to s′ for the next iteration. 

9. Decay Exploration Rate (optional): Gradually reduce ϵ to increase exploitation 

over time. 

10. Repeat: Continue looping until Q-values converge to stable values. 
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  Algorithm 2. Deep Q-networks initialize replay memory D to capacity N. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Fig. 4. Deep Q-network algorithm flow chart. 

 

2.1.3|SARSA algorithm 

The SARSA algorithm is an on-policy RL approach for training agents to make sequential decisions [9]. Unlike 

Q-learning, which learns from actions outside the agent's current policy, SARSA updates its values based on 

its actions, leading to safer learning in uncertain environments. The agent selects an action, observes the 

resulting reward and next state, then chooses the following action based on its policy and updates its value 

estimates. This makes SARSA especially suited for situations where safe exploration and adapting to real-time 

feedback are essential. 

Initialize action-value function Q with random weights 

for episode = 1, M do 

Initialise sequence s1 = {x1} and preprocessed sequenced φ1 = φ(s1) 

for t = 1, T do 

With probability e, select a random action ot;otherwise, select at = max Q∗(φ(st), a; θ) 

Execute action in the emulator and observe reward rt and image xt+1 

Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1) Store transition (φt, at, rt, φt+1) in 

D. Sample random minibatch of transitions (φj , aj , rj , φj+1) from D Set yj = { rj

 for terminal φj+1 

rj + γ maxa′ Q(φj+1, a′; θ) for non-terminal φj+1 

Perform a gradient descent step on (yj − Q(φj , aj ; θ))2 according to equation 3 

end for 

end for 
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Fig. 5. Least connection algorithm. 
 

SARSA is used in scenarios like autonomous navigation, gameplay, and agent training in dynamic 

environments where safety or penalties need to be considered carefully. 

I. Initialize: Initialize Q-values for all state-action pairs (often randomly). 

II. Select action (A): Choose an action based on the current state S, using a policy derived from Q-values, such 

as the ε-greedy policy. 

III. Take action and observe reward: Take action A, observe the reward R, and the new state S′. Choose next 

action A′: Based on the new state S′, select the following action A′ using the same policy. Update Q-value: 

Update the Q-value for the state-action pair (S, A) using the following SARSA update rule: 

Q(S,A)←Q(S,A)+α(R+γQ(S′,A′)−Q(S,A)) 

IV. α: Learning rate controls how much new information overrides old information. 

V. γ: Discount factor represents the importance of future rewards. 

VI. Repeat: Set S←S′ and A←A′, and repeat steps 3 to 5 until the episode ends. 

Example 

An agent might use SARSA to learn the safest path to a goal in a grid-world navigation task. Each movement 

earns a small negative reward (e.g., -1) while reaching the goal provides a positive reward (e.g., +10). Over 

time, SARSA will guide the agent toward the path that minimizes the steps to the goal and maximizes the 

cumulative reward, even if it means occasionally exploring alternative routes to improve its policy. 

Table 3. Routing strategies algorithm analysis. 

Algorithm Convergence 
Speed 

Advantages Disadvantages Scalability 

Q learning 
 

 Simple and easy to implement, 
it guaranteed convergence to 
an optimal policy with enough 
exploration 

It is unsuitable for 
large/continuous state 
spaces; it needs 
discretization. 

Limited 
Scalability 
 

Deep Q-
network 
 

 Handles large and continuous 
state spaces; effective in 
complex environments. 

It can be unstable; it 
requires a large replay 
memory and a target 
network to stabilize 
learning. 

Improve 
scalability by 
employing 
deep neural 
networks 

SARSA  is Safer and more 
conservative than 
Q-learning avoids risky paths 
by updating based on the 
current policy. 

Converges to 
suboptimal policies if 
exploration is limited; 
slower convergence 
than Q- learning 

Shares similar 
scalability 
constraints 
with Q- Q-
learning 
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  Recommendation for low-latency IoT networks 

In the context of low-latency IoT networks, Q-learning and SARSA are the most suitable choices, as they are 

easy to implement and demonstrate the lowest latency in discrete environments. SARSA excels in this area 

due to its on-policy learning approach, which allows it to adaptively modify task policies in response to 

dynamic conditions and potential hazards. This adaptability ensures safer decision-making, critical in 

environments where timely and accurate responses are essential. 

While DQN can tackle complex problems characterized by high-dimensional state spaces and numerous 

degrees of freedom, it often introduces additional latency due to the computational demands of deep learning 

architectures. The process of action selection in DQNs, coupled with the need for extensive training and 

hyperparameter tuning, can detract from the immediate responsiveness required in low-latency applications. 

Therefore, in scenarios where minimizing latency is paramount, Q-learning and SARSA are more effective 

options, providing reliable performance without compromising speed. 

3|Challenges Associated with Routing Strategies 

IoT routing strategies face challenges related to scalability, energy efficiency, and low latency. Dynamic 

network conditions, security threats, and limited device resources add complexity, and privacy concerns 

further complicate decentralized routing. 

3.1|Power and PayLoad 

IoT devices are equipped with finite battery power; thus, energy efficiency is an important prerequisite for 

successful routing. The size of the data traffic could be very large, which causes an overloading problem on 

network resources; thereby, delays and packet loss are inevitable. 

3.2|Dynamic Network 

Moving networks encounter challenges due to device mobility, which complicates routing by altering network 

topology. Adaptive routing can dynamically adjust connections to address these changes. Moreover, 

environmental factors like interference and congestion require intelligent mechanisms to optimize routes and 

maintain performance quickly. 

3.3|Energy Efficiency 

Energy efficiency is crucial in IoT networks due to the limited battery capacities of many devices. Increased 

energy consumption can lead to frequent battery replacements, limiting device lifespan and reliability. 

Therefore, routing strategies must minimize energy use by balancing data transmission and node power to 

enhance overall network performance. 

3.4|Data Security 

Data security is crucial in IoT networks due to the sensitive information transmitted. Device vulnerabilities 

can lead to unauthorized access and data breaches. Therefore, robust security measures, such as encryption 

and secure authentication, are essential to protect data integrity while maintaining network performance and 

minimizing latency. 

4|Limitations of AI-Powered Routing Strategies 

4.1|Limitations of Q-Learning 

Q-learning has limitations in vast state-action spaces, where prolonged exploration results in sluggish learning, 

notwithstanding its effectiveness in learning optimal policies. Because it treats each state separately, it lacks 
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  generalization and has trouble with continuous state spaces that aren't modified, such as function 

approximations. These problems limit its scalability and efficiency for high-dimensional, complex situations. 

4.1.1|Scalability 

Q-learning struggles with large state-action spaces, as significant memory and computational resources are 

required to store and update the Q-values for every possible state-action pair. 

4.1.2|Incompatibility with continuous spaces 

Q-learning requires discrete states, making it challenging to use directly in environments with continuous 

states without additional modifications like function approximations. 

1.4.3|Lack of generalization 

Q-Learning assigns a unique Q-value to each specific state-action pair, treating them as separate experiences. 

This lack of generalization means that similar states are not recognized as related, preventing the agent from 

applying knowledge gained in one area to another. As a result, the agent often re-learns similar information 

multiple times, leading to redundant computations and slower convergence, especially in environments with 

numerous or structurally similar states. 

4.2|Limitations of Deep Q-Networks 

DQNs improve on standard Q-Learning by using deep neural networks to approximate Q-values, but they 

still have notable limitations: 

4.2.1|Sample inefficiency 

DQNs require large amounts of training data to learn effectively, as neural networks need numerous samples 

to approximate Q-values accurately, making training slow and resource-intensive. 

4.2.2|Stability and convergence issues 

DQNs can be unstable and struggle to converge, especially in environments with sparse rewards or delayed 

rewards. To improve stability, techniques like experience replay and target networks are often required. 

4.2.3|Poor generalization in complex environments 

DQNs can overfit to specific states seen during training, which limits their ability to generalize well in more 

complex or dynamic environments and reduces performance outside of training conditions. 

4.3|Limitations of SARSA Algorithm 

The SARSA (State-Action-Reward-State-Action) algorithm, commonly used in RL, has demonstrated 

effectiveness across various domains, particularly in managing dynamic environments and making sequential 

decisions. However, like any algorithm, SARSA has limitations that affect its scalability, reliability, and 

efficiency in complex systems. This section examines the challenges faced when applying SARSA in diverse 

applications. 

4.3.1|Vulnerability to high variance in reward function 

SARSA’s reliance on observed rewards can lead to significant fluctuations in performance, particularly in 

environments with high variability in reward structures. High reward variance may cause SARSA to converge 

slowly or to a suboptimal policy due to the inconsistent reward feedback loop, leading to prolonged training 

times and unpredictable performance in real-world applications. This phenomenon is similar to the “credit 

assignment problem" in RL, where the agent struggles to identify actions that contribute to delayed rewards 

correctly. 
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  4.3.2|Dependence on exploration policy 

SARSA's on-policy nature means it evaluates and improves the policy it uses to make decisions, relying heavily 

on a balanced exploration strategy. If the exploration policy is not well-designed, SARSA may excessively 

explore suboptimal regions of the state-action space, potentially resulting in slower convergence or 

convergence to a suboptimal solution. This issue, akin to “policy oscillation,” occurs when the agent 

repeatedly visits states without improving its understanding of optimal actions. 

4.3.3|Sensitivity to environment dynamics 

SARSA is sensitive to environmental changes since it updates the policy based on observed states and actions. 

This can lead to instability in highly dynamic environments, as SARSA may struggle to adapt quickly enough 

to changing conditions. This limitation is similar to the “catastrophic forgetting” problem, where an algorithm 

loses information about previously learned patterns due to new, conflicting information, often resulting in 

degraded performance over time. 

5|Proposed Work 

The proposed work focuses on developing AI-powered routing strategies to optimize latency, efficiency, and 

adaptability within IoT networks. By addressing the unique challenges of IoT, such as scalability, dynamic 

network conditions, and low-power constraints, this work aims to enhance real-time data transmission, 

making IoT systems more responsive and reliable. 

5.1|Optimization of AI-Driven Routing Protocols 

I. Develop advanced AI-based routing algorithms that dynamically adjust to varying network conditions, 

minimizing latency and maximizing data throughput in IoT networks. 

II. Implement RL and predictive modeling techniques to enhance route decision-making, enabling optimized 

packet delivery paths and reducing bottlenecks in dense IoT environments. 

5.2|Adaptability and Low-Power Management 

I. Introduce energy-efficient, AI-based routing mechanisms that prioritize low-latency paths while conserving 

device battery life, which is crucial in resource-constrained IoT applications. 

II. Explore adaptive protocols that adjust routing decisions based on node availability, mobility patterns, and 

energy levels, supporting prolonged network functionality and resilience in dynamic IoT ecosystems. 

5.3|Enhancement of Security in AI-Powered Routing 

I. Strengthen security to counter DDoS attacks and IP spoofing by integrating advanced authentication 

protocols and robust access control to ensure secure IoT data transmission. 

II. Explore adaptive routing approaches that address challenges posed by dynamic IPs, improve security against 

spoofing, and enhance routing efficiency in variable network conditions. 

5.4|Refinement of Bandwidth and Network Resource Allocation 

I. Develop proactive algorithms for dynamic bandwidth allocation, preventing network congestion and 

enhancing data transmission speeds in bandwidth-limited environments. 

II. Investigate adaptive routing methods to manage network speed variations, incorporating intelligent 

protocols that optimize performance and maintain low-latency transmission across changing network 

conditions. 



 AI-powered routing strategies for low-latency IoT networks 

 

148

 

  6|Conclusion 

In conclusion, this paper has undertaken a detailed study of AI-powered routing strategies for low-latency 

IoT networks, analyzing the current challenges and future opportunities within this evolving field. By 

examining issues such as dynamic network conditions, resource constraints, security vulnerabilities, and 

scalability, we have gained insights into the limitations of traditional IoT routing methods and identified areas 

ripe for innovation. 

We aim to address these challenges through the proposed work by developing AI-enhanced routing protocols 

that adapt dynamically to fluctuating network environments. The proposed strategies focus on optimizing 

latency, conserving power in resource-limited devices, and implementing enhanced security measures. 

Additionally, adaptive routing techniques and scalable bandwidth allocation approaches aim to improve both 

the resilience and performance of IoT networks. 

This research contributes to the ongoing development of intelligent routing solutions, emphasizing the need 

for secure, efficient, and highly responsive networks in IoT applications. By addressing key obstacles and 

implementing adaptive routing mechanisms, we strive to unlock the full potential of IoT technology in various 

industries, paving the way for more resilient, scalable, and efficient IoT infrastructures capable of supporting 

next-generation applications and services. 
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