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1|Introduction 

The concept of smart cities has rapidly evolved, driven by the Internet of Things (IoT), which enables a wide 

range of applications to improve urban infrastructure and quality of life [1]. From real-time traffic control to 

waste management and energy efficiency, IoT networks in smart cities rely on interconnected devices and 

sensors to collect and transmit data [2]. However, IoT networks' increasing density and complexity in urban 

environments present significant challenges, especially regarding data routing, network congestion, and 

communication reliability [3], [4]. Efficient routing protocols are crucial for managing data traffic, conserving 

energy, and maintaining low latency in high-density networks. 
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Abstract 

The rise of Internet of Things (IoT) networks in smart cities has provided a range of advantages, such as real-time 

traffic management and optimized energy usage. Nonetheless, these networks encounter hurdles related to data traffic 

overload, fluctuating network conditions, and the necessity for scalable communication frameworks. Artificial 

Intelligence (AI)-driven routing protocols present a promising alternative by effectively overseeing data flow, 

minimizing latency, and maximizing resource utilization. This research paper examines the effectiveness of AI-based 

algorithms in improving routing performance within smart city IoT networks. It investigates several AI methods, 

including Machine Learning (ML) and Reinforcement Learning (RL), that react dynamically to network conditions, 

anticipate traffic loads, and determine optimal paths for effective data transmission. By incorporating these AI-

enhanced protocols, smart cities can achieve lower energy usage, enhanced scalability, and greater dependability. 

Comparative simulations between traditional and AI-driven routing protocols indicate that AI-based approaches can 

considerably alleviate congestion and improve response times, even in densely populated urban IoT environments. 

This research provides valuable insights into the implementation of AI-enabled routing in smart city IoT networks, 

laying the foundation for more intelligent and sustainable urban infrastructures. 
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  While effective for smaller-scale IoT networks, traditional routing protocols often struggle with smart cities' 

scalability and dynamic conditions. This is where Artificial Intelligence (AI)-driven routing protocols can offer 

substantial benefits. AI-based algorithms, such as Machine Learning (ML) and Reinforcement Learning (RL), 

enable dynamic and adaptive routing by analyzing real-time data, predicting traffic patterns, and adjusting 

communication paths accordingly [5]. Integrating AI with routing protocols can enhance IoT network 

performance by reducing congestion, improving response times, and optimizing resource usage [6], [7]. 

Table 1. Comparison between traditional and artificial intelligence-driven routing protocols in 

internet of things networks. 

 

 

 

1.1|Challenges in Internet of Things Network Routing for Smart Cities 

The primary routing challenges for smart city IoT networks are due to high device density, unpredictable 

traffic patterns, and limited energy resources. Unlike conventional networks, IoT-based smart city networks 

must operate efficiently across numerous diverse devices, often constrained by battery life and processing 

capabilities. Additionally, IoT devices generate enormous amounts of data, resulting in high traffic loads and 

potential congestion in communication networks. As illustrated in Fig. 1, traffic congestion can lead to delayed 

data delivery, particularly during peak urban activities like rush hours. 

Fig. 1. Traffic congestion in urban internet of things network. 

 

1.2|Objectives of Artificial Intelligence-Driven Routing Protocols 

AI-driven routing protocols aim to mitigate these challenges by leveraging predictive and adaptive algorithms. 

ML models can analyze historical data to identify traffic patterns, allowing the system to predict high network 

load periods and preemptively adjust routes [8]. For instance, RL algorithms can enable nodes to dynamically 

select paths based on reward functions, such as minimizing latency and energy consumption. These AI-based 

approaches support real-time decision-making, enabling smart city IoT networks to maintain optimal 

performance under fluctuating conditions. 

Protocol Type Advantages Challenges 

Traditional 
routing 

Simple, low computational 
overhead. 

Limited scalability, struggles with dynamic data loads. 

AI-driven 
routing 

Adaptive, optimized for real-time 
conditions. 

Higher computational cost, complexity in implementation. 
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  Table 2. Outlines the key objectives of implementing artificial intelligence-driven 

routing protocols in smart city internet of things networks. 

 

 

 

 
 

1.3|Scope of the Research 

This paper investigates the potential of AI-driven routing protocols to enhance the efficiency and reliability 

of smart city IoT networks. We analyze various AI algorithms, including ML and RL, to determine their 

effectiveness in addressing the unique demands of urban IoT deployments. The study includes simulations 

comparing traditional and AI-driven routing protocols under different network conditions to evaluate 

performance metrics like latency, throughput, and energy efficiency. This research aims to comprehensively 

understand how AI can revolutionize routing in smart city IoT networks, facilitating smarter, more resilient 

urban infrastructures. 

2|Literature Review 

The proliferation of IoT devices in smart cities has revolutionized urban infrastructure by enabling real-time 

data collection and analysis, enhancing decision-making processes, and improving quality of life. However, 

the rapid expansion of IoT networks has also created new challenges, particularly regarding data routing, 

network congestion, and scalability. Traditional routing protocols used in IoT networks often fall short in 

these areas, especially when network conditions fluctuate frequently. In response, researchers have turned to 

AI-driven routing protocols, which leverage ML and RL to dynamically optimize routing paths based on real-

time data analysis and predictive modelling. 

2.1|Traditional vs. Artificial Intelligence-Driven Routing Protocols 

Traditional IoT routing protocols, including Shortest Path routing, directed diffusion, and cluster-based 

routing, are generally efficient for smaller networks with static, predictable traffic patterns. However, these 

methods are often inadequate in high-density urban IoT networks due to their limited adaptability to dynamic 

conditions and scalability issues. Traditional protocols rely on fixed algorithms, leading to increased latency 

and data packet loss under heavy loads. 

Conversely, AI-driven routing protocols, such as those based on Q-learning and Deep Reinforcement 

Learning (DRL), offer adaptive, real-time optimization of routing paths [9]. These protocols analyze traffic 

data, predict congestion, and adjust routing decisions dynamically, which enhances network efficiency and 

reduces latency. Table 3 compares traditional and AI-driven routing protocols regarding scalability, 

adaptability, and computational complexity. 

Table 3. Comparison of routing protocols based on scalability, real-time adaptability, and 

computational complexity. 

 

 

Objective Description 

Reducing network congestion Dynamic routing based on real-time traffic predictions. 

Enhancing scalability Adaptive routing to accommodate increasing device density. 

Minimizing energy consumption Intelligent path selection to extend IoT device battery life. 

Improving data reliability Ensuring accurate data delivery with minimal packet loss. 

Routing Protocol Scalability Adaptability to Real-Time Conditions Computational Complexity 

Traditional routing Low Low Low 

AI-driven (Q-learning) Medium Medium Medium 

AI-driven (DRL) High High High 
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  2.2|Artificial Intelligence Techniques in Routing Protocols 

AI-driven routing protocols for IoT networks in smart cities primarily employ ML and RL techniques. RL 

algorithms, such as Q-learning, enable network nodes to learn optimal routing paths by interacting with the 

environment and receiving rewards based on performance metrics, such as minimized latency or energy 

consumption. According to a study by Lalani et al. [10], Q-learning improves data throughput in IoT networks 

by up to 25% compared to traditional protocols under fluctuating traffic conditions. 

DRL further extends the capabilities of RL by incorporating deep neural networks, allowing for more complex 

decision-making processes. In a smart city environment, DRL can predict future traffic loads based on 

historical data, dynamically adjusting routing to avoid congestion. Research by Wang et al. [11] demonstrated 

that DRL-based routing protocols reduced average latency by 35% compared to traditional cluster-based 

routing in high-density urban networks area. 

2.3|Performance Metrics in Artificial Intelligence-Driven Routing 

AI-driven routing protocols are evaluated based on key performance metrics: 1) latency, 2) energy 

consumption, 3) throughput, and 4) Packet Delivery Ratio (PDR). These metrics are particularly important 

for smart city applications where real-time data transmission is crucial, such as traffic management and 

emergency response systems. 

I. Latency: The time delay in data transmission is critical in evaluating routing protocols. AI-driven methods 

that adapt to traffic loads can significantly reduce latency. 

II. Energy consumption: IoT devices in smart cities often have limited power resources, and AI-driven 

protocols can optimize energy usage by selecting routes that consume less power. 

III. Throughput: This measures the amount of data successfully transmitted across the network. Adaptive 

routing protocols generally achieve higher throughput by avoiding congested paths. 

IV. PDR: PDR indicates the success rate of data packets reaching their destination. Higher PDR in AI-driven 

routing reflects improved reliability in dynamic network conditions. 

Table 4. Average performance metrics for various artificial intelligence-driven 

protocols compared to traditional routing. 

 

 

 

 
 

2.4|Applications and Case Studies 

AI-driven routing protocols have proven effective in a range of smart city applications. For instance, in traffic 

management, AI algorithms use historical data to predict and alleviate congestion by dynamically rerouting 

data through less busy nodes. A study by Arévalo and Jurado [12] on smart grid networks showed that AI-

driven routing could reduce power consumption by 20%, a critical benefit for energy-constrained IoT 

systems. 

Another application is emergency response. In scenarios like disaster management, where network 

infrastructure may be compromised, adaptive AI protocols enable fast data rerouting, ensuring critical 

information reaches emergency teams without delay. AI-driven protocols have shown a 15% improvement 

in emergency response times compared to static routing methods, as reported. 

Metric Traditional Routing Q-Learning DRL 

Latency (ms) 150 110 90 

Energy consumption High Medium Low 

Throughput (Mbps) 40 55 65 

PDR 85% 92% 95% 
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  3|Methodology 

This study investigates the effectiveness of AI-driven routing protocols in enhancing communication 

efficiency in smart city IoT networks. The methodology involves setting up a simulated IoT network, 

implementing traditional and AI-driven routing protocols, and analyzing various performance metrics, 

including latency, throughput, energy consumption, and PDR. The experiment used the NS-3 and 

OMNeT++ network simulators, known for their ability to model large-scale IoT environments accurately. 

3.1|Network Simulation Setup 

The IoT network model includes 500 to 2,000 devices distributed across a simulated urban area. Devices are 

connected to multiple edge nodes that act as local processing centers. Data collected from these devices is 

either processed locally or routed through the network to a central cloud server, depending on the priority of 

the data. For instance, time-sensitive traffic data is routed through edge nodes to minimize latency, while less 

critical data is sent to the cloud for storage and analysis. 

Table 5. Network simulation parameters. 

 

 

 

 

 

3.2|Implementation of Routing Protocols 

Three types of routing protocols were implemented in the simulation to compare their performance: 

I. Shortest Path routing: A traditional method that selects the path with the least number of hops without 

considering network congestion. 

II. Q-learning algorithm: A RL-based algorithm that uses a reward mechanism to discover optimal paths based 

on performance metrics like latency and energy consumption. Each node selects a route that maximizes 

cumulative rewards, calculated using the formula: 

 

where: 1) Q(s, a): Current Q-value for state-action pair (s, a), 2) α: Learning rate, 3) r: Reward received, 4) γ: 

Discount factor, and 5) s′, a′: Next state and action. 

III. DRL: A more advanced AI technique combining RL with deep neural networks to handle complex routing 

decisions. DRL algorithms, such as Deep Q-Networks (DQNs), can predict traffic congestion and optimize 

routes by leveraging large amounts of historical and real-time data. 

3.3|Performance Metrics and Analysis 

The protocols were evaluated based on four primary metrics: 1) latency, 2) throughput, 3) energy 

consumption, and 4) PDR. 

I. Latency (ms): The delay in data packet transmission was measured by recording the time difference between 

sending and receiving packets across nodes. Lower latency indicates faster data delivery, essential for smart 

city applications. 

II. Throughput (Mbps): Throughput measures the total data successfully transmitted per second, calculated 

using. 

Parameter Value 

Number of devices 500 - 2,000 

Number of edge nodes 20 

Simulation duration 48 hours 

Network bandwidth 100 Mbps 

Routing protocols tested Shortest Path, Q-learning, DRL 

Q(s, a) = Q(s, a) + α(r + γmaxQ(s′, a′) − Q(s, a)), (1) 
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III. Energy consumption (J): The total energy used by each protocol was computed using energy models 

embedded within NS-3, which simulate real-world energy usage patterns for IoT devices. 

IV. PDR: PDR was calculated as 

Higher PDR indicates greater reliability in data transmission. 

Table 6. Performance metrics. 

 

 

 

  

 

3.4|Data Analysis and Visualization 

After simulation, data collected on each protocol’s performance were analyzed using Python to generate 

comparative graphs. These include: 

I. Latency comparison graph: A line graph comparing the average latency of each protocol across different 

traffic loads, showcasing how Q-learning and DRL respond to dynamic network conditions. 

II. Throughput and PDR bar chart: A bar chart showing the throughput and PDR for each protocol, 

illustrating the efficiency of AI-driven protocols in maintaining higher data flow and reliability. 

III. Energy consumption graph: A bar chart comparing the energy consumption of each protocol, where AI-

driven protocols are expected to demonstrate lower energy usage due to optimized path selection. 

Fig. 2. Latency comparison across protocols. 

 

3.5|Hypothesis Testing 

A t-test was conducted to statistically compare AI-driven protocols' mean latency and energy consumption 

to validate their effectiveness over traditional ones. The null hypothesis assumed no significant difference 

between traditional and AI-driven protocols, while the alternative hypothesis anticipated that AI-driven 

protocols would yield better performance metrics. 

Throughput =
 Total Data Transferred (bits) 

 Total Time (seconds) 
.  

PDR =
 Total Packets Delivered 

 Total Packets Sent 
× 100%.  

Metric Description 

Latency (ms) Average time delay in data transmission. 

Throughput (Mbps) Data transferred per second. 

Energy consumption (J) Total power consumption for each protocol. 

PDR (%) The ratio of packets delivered successfully to packets sent. 
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  4|Results and Discussion 

The simulation results provide a comparative analysis of the three routing protocols—Shortest Path, Q-

learning, and DRL—focusing on key performance metrics: latency, throughput, energy consumption, and 

PDR. The findings demonstrate significant performance improvements in AI-driven routing protocols, 

particularly with DRL, over traditional routing methods. 

4.1|Latency 

the average latency across the three protocols under varying traffic conditions. Both Q-learning and DRL 

significantly reduce latency compared to the Shortest Path protocol, with DRL achieving a 40% reduction in 

high-density scenarios. This improvement is due to the DRL algorithm’s ability to predict and avoid congested 

routes, ensuring quicker data delivery. 

Table 7. Average latencies across different protocols. 

 

 

  

These findings are critical for smart city applications that require real-time data transmission, such as traffic 

monitoring and emergency response systems. By proactively adjusting routing paths, AI-driven protocols 

minimize delays, enhancing the responsiveness of IoT networks in urban environments. 

4.2|Throughput 

Throughput measures the data successfully transmitted per second, a crucial metric for high-density IoT 

networks. As shown in Table 8, both Q-learning and DRL exhibit higher throughput than the Shortest Path, 

with DRL achieving the highest throughput at 65 Mbps, compared to 40 Mbps for the Shortest Path. This 

increase in throughput is attributed to the adaptive nature of AI-driven protocols, which dynamically allocate 

network resources to accommodate fluctuating traffic loads. 

Table 8. Throughputs across different protocols. 

 

 

 

The results suggest that AI-driven protocols are better suited for handling data-intensive IoT applications. 

They maximize network efficiency and ensure that higher volumes of data are transmitted without 

compromising speed or reliability. 

4.3|Energy Consumption 

Energy efficiency is essential in IoT networks, as many devices rely on limited power sources. Table 9 illustrates 

energy consumption for each protocol, with DRL consuming the least energy, reducing power usage by 20% 

compared to the Shortest Path protocol. This is due to DRL’s optimized routing decisions, which minimize 

the number of hops and reduce network congestion, resulting in lower energy demands across the network. 

Table 9. Energy consumption across different protocols. 

 

 

 

Protocol Average Latency (ms) 

Shortest Path 150 

Q-learning 110 

DRL 90 

Protocol Throughput (Mbps) 

Shortest Path 40 

Q-learning 55 

DRL 65 

Protocol Energy Consumption (J) 

Shortest Path 100 

Q-learning 85 

DRL 80 
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  Lower energy consumption in AI-driven protocols translates to prolonged battery life for IoT devices, critical 

for smart city deployments requiring continuous operation. AI-driven routing's notable advantage is the ability 

to conserve energy without sacrificing network performance. 

4.4|Packet Delivery Ratio 

PDR is a measure of reliability, indicating the percentage of data packets successfully delivered to their 

destination. Table 10 shows that DRL achieved a PDR of 95%, outperforming both Shortest Path and Q-

learning. DRL's high PDR indicates its robustness in maintaining data integrity, even in high-density network 

conditions, reducing packet loss, and enhancing communication reliability. 

Table 10. Packet delivery ratio across different protocols. 

 

 

 

Comparative analysis and discussion 

The results demonstrate that AI-driven routing protocols, particularly those based on DRL, consistently 

outperform traditional protocols across all performance metrics. The latency reduction observed in AI-driven 

protocols is crucial for applications that depend on timely data delivery. At the same time, increased 

throughput ensures higher data flow rates necessary for large-scale smart city networks. Furthermore, the 

significant decrease in energy consumption highlights the efficiency of AI-driven protocols in prolonging 

device battery life, which is critical in IoT networks with constrained power resources. 

The improvements in PDR also underscore the reliability of AI-driven protocols. By predicting and adapting 

to changing network conditions, DRL reduces packet loss, a critical factor in maintaining data integrity and 

reliability in smart city applications such as environmental monitoring, public safety, and urban mobility. 

These findings suggest that AI-driven routing protocols, particularly DRL, offer significant advantages for 

smart city IoT networks. Their adaptability to real-time conditions and ability to optimize routes based on 

predicted traffic loads make them well-suited for complex urban IoT environments. However, it is essential 

to consider that the computational requirements of DRL are higher than those of simpler algorithms like 

Shortest Path. Future edge computing and hardware optimization developments will be necessary to deploy 

DRL efficiently across large-scale IoT networks without overwhelming local resources. 

5|Conclusion 

This research highlights the effectiveness of AI-driven routing protocols in improving the performance and 

scalability of IoT networks within smart cities. By leveraging adaptive AI techniques such as Q-learning and 

DRL, these protocols significantly reduce latency, increase throughput, optimize energy consumption, and 

improve the PDR. The results show that DRL, in particular, consistently outperforms traditional routing 

methods, making it well-suited for high-density urban IoT networks where real-time data transmission is 

critical. 

AI-driven protocols' ability to predict network congestion and adapt to fluctuating traffic patterns allows for 

more efficient data routing and resource utilization. This is essential for the sustainability of IoT devices with 

limited energy resources. While AI-driven protocols require higher computational power, advancements in 

edge computing can facilitate their integration in large-scale IoT networks. 

In conclusion, AI-driven routing protocols offer a promising solution for addressing the complex 

communication demands of smart city IoT infrastructures. Future research should explore hybrid models that 

optimize these protocols for real-world deployment, enabling smarter, more resilient urban systems. 

Protocol PDR (%) 

Shortest Path 85 

Q-learning 92 

DRL 95 
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